Rabu, 05 Agustus 2009 di 21.47 | 0 komentar  
Network ID

Network ID ( Identitas Jaringan) adalah sebuah alamat (network prefix) yang dijadikan sebagai identitas dari suatu jaringan. Yang sering menjadi masalah tentunya dalam menentukan Network ID tersebut. Permasalahan ini sering ditemukan pada saat melakukan konfigurasi Routing. Baik itu static routing maupun pada dynamic routing. Dimana pada perintah static routing maupun dynamic routing diharuskan menyebutkan Network ID (Network Prefix).
Kali saya akan mengulas bagaimana cara menentukan Network ID, yang dianggap oleh sebagian mahasiswa ini merupakan hal yang sulit. Padahal tidak!
Untuk menentukan Network ID rumus yang digunakan adalah :
Network ID = IP Address AND Subnet Mask
Contoh :
Sebuah jaringan yang terdiri atas 4 buah PC masing-masing dengan alamat 192.168.3.2, 192.168.3.3, 192.168.3.4 dan 192.168.3.5 serta subnet mask yang digunakan adalah subnet mask default kelas C yaitu 255.255.255.0, maka Network ID nya adalah,
192.168.3.2 AND 255.255.255.0
192.168.3.3 AND 255.255.255.0
192.168.3.4 AND 255.255.255.0
192.168.3.5 AND 255.255.255.0
ke empat alamat tersebut akan menghasilkan Network ID yang sama yaitu 192.168.3.0 , loh kok? Gimana bisa? ya tentu bisa, karena sebelum IP Address dan Subnet mask tersebut di konversikan menjadi bilangan binari 32 bit yang di kelompokkan per delapan bit yang dipisahkan dengan titik.
misal untuk 192.168.3.4 AND 255.255.255.0 menjadi,
11000000.10101000.00000011.00000100 AND 11111111.11111111.11111111.00000000 hasilnya 11000000.10101000.00000011.00000000 jika di konversikan ke decimal dotted menjadi 192.168.3.0


Netmask

Untuk pengelompokan pengalamatan, selain nomor IP dikenal juga netmask atau subnetmask. Yang besarnya sama dengan nomor IP yaitu 32 bit. Ada tiga pengelompokan besar subnet mask yaitu dengan dikenal, yaitu 255.0.0.0 , 255.255.0.0 dan 255.0.0.0.
Pada dunia jaringan, subnetmask tersebut dikelompokkan yang disebut class dikenal tiga class yaitu :
1. Class A, adalah semua nomor IP yang mempunyai subnetmask 255.0.0.0
2. Class B, adalah semua nomor IP yang mempunyai subnetmask 255.255.0.0
3. Class C, adalah semua nomor IP yang mempunyai subnetmask 255.255.255.0

Gabungan antara IP dan Netmask inilah pengalamatan komputer dipakai. Kedua hal ini tidak bisa lepas. Jadi penulisan biasanya sbb :

IP : 202.95.151.129
Netmask : 255.255.255.0

Suatu nomor IP kita dengan nomor IP tetangga dianggap satu kelompok (satu jaringan) bila IP dan Netmask kita dikonversi jadi biner dan diANDkan, begitu juga nomor IP tetangga dan Netmask dikonversi jadi biner dan diANDkan, jika kedua hasilnya sama maka satu jaringan. Dan kita bisa berhubungan secara langsung.


Ketika kita berhubungan dengan komputer lain pada suatu jaringan, selain IP yang dibutuhkan adalah netmask. Misal kita pada IP 10.252.102.12 ingin berkirim data pada 10.252.102.135 bagaimana komputer kita memutuskan apakah ia berada pada satu jaringan atau lain jaringan? Maka yang dilakukan adalah mengecek dulu netmask komputer kita karena kombinasi IP dan netmask menentukan range jaringan kita.
Jika netmask kita 255.255.255.0 maka range terdiri dari atas semua IP yang memiliki 3 byte pertama yang sama. Misal jika IP saya 10.252.102.12 dan netmask saya 255.255.255.0 maka range jaringan saya adalah 10.252.102.0-10.252.102.255 sehingga kita bisa secara langsung berkomunukasi pada mesin yang diantara itu, jadi 10.252.102.135 berada pada jaringan yang sama yaitu 10.252.102 (lihat yang angka-angka tercetak tebal menunjukkan dalam satu jaringan karena semua sama).
Dalam suatu organisasi komersial biasanya terdiri dari beberapa bagian, misalnya bagian personalia/HRD, Marketing, Produksi, Keuangan, IT dsb. Setiap bagian di perusahaan tentunya mempunyai kepentingan yang berbeda-beda. Dengan beberapa alasan maka setiap bagian bisa dibuatkan jaringan lokal sendiri – sendiri dan antar bagian bisa pula digabungkan jaringannya dengan bagian yang lain.
Ada beberapa alasan yang menyebabkan satu organisasi membutuhkan lebih dari satu jaringan lokal (LAN) agar dapat mencakup seluruh organisasi :
Teknologi yang berbeda. Dalam suatu organisasi dimungkinkan menggunakan bermacam teknologi dalam jaringannya. Semisal teknologi ethernet akan mempunyai LAN yang berbeda dengan teknologi FDDI.
Sebuah jaringan mungkin dibagi menjadi jaringan yang lebih kecil karena masalah performanasi. Sebuah LAN dengan 254 host akan memiliki performansi yang kurang baik dibandingkan dengan LAN yang hanya mempunyai 62 host. Semakin banyak host yang terhubung dalam satu media akan menurunkan performasi dari jaringan. Pemecahan yang paling sedherhana adalah memecah menjadi 2 LAN.
Departemen tertentu membutuhkan keamanan khusus sehingga solusinya memecah menjadi jaringan sendiri.

Pembagian jaringan besar ke dalam jaringan yang kecil-kecil inilah yang disebut sebagai subnetting. Pemecehan menggunakan konsep subnetting. Membagi jaringan besar tunggal ke dalam sunet-subnet (sub-sub jaringan). Setiap subnet ditentukan dengan menggunakan subnet mask bersama-sama dengan no IP.

Pada subnetmask dalam biner, seluruh bit yang berhubungan dengan netID diset 1, sedangkan bit yang berhubungan dengan hostID diset 0.
Dalam subnetting, proses yang dilakukan ialah memakai sebagian bit hostID untuk membentuk subnetID. Dengan demikian jumlah bit yang digunakan untuk HostID menjadi lebih sedikit. Semakin panjang subnetID, jumlah subnet yang dibentuk semkain banyak, namun jumlah host dalam tiap subnet menjadi semakin sedikit.



Cara Pembentukan Subnet :

Misal jika jaringan kita adalah 192.168.0.0 dalm kelas B (kelas B memberikan range 192.168.0.0 – 192.168.255.255). Ingat kelas B berarti 16 bit pertama menjadi NetID yang dalam satu jaringan tidak berubah (dalam hal ini adalah 192.168) dan bit selanjutya sebagai Host ID (yang merupakan nomor komputer yang terhubung ke dan setiap komputer mempunyai no unik mulai dari 0.0 – 255.255). Jadi netmasknya/subnetmasknya adalah 255.255.0.0
Kita dapat membagi alokasi jaringan diatas menjadi jaringan yang kebih kecil dengan cara mengubha subnet yang ada.
Ada dua pendekatan dalam melakukan pembentukan subnet yaitu :
1. Berdasarkan jumlah jaringan yang akan dibentuk
2. Berdasarkan jumlah host yang dibentuk dalam jaringan.

Cara perhitungan subnet berdasarkan jumlah jaringan yang dibutuhkan :

1. Menentukan jumlah jaringan yang dibutuhkan dan merubahnya menjadi biner.
11111111Misalkan kita ingin membuat 255 jaringan kecil dari nomor jaringan yang sudah ditentukan. 255
2. Menghitung jumlah bit dari nomor 1. Dan jumlah bit inilah yang disebut sebagai subnetID
jumlah bitnya adalah 8 11111111 Dari 255
3. Jumlah bit hostID baru adalah HosiID lama dikurangi jumlah bit nomor 2.
Misal dari contoh diatas hostIDbaru: 16 bit – 8 bit = 8 bit.
4. Isi subnetID dengan 1 dan jumlahkan dengan NetIDLama.
Jadi NetID baru kita adalah NetIDlama + SubNetID :
11111111.11111111.11111111.00000000 (24 bit bernilai 1 biasa ditulis /24)
Berkat perhitungan di atas maka kita mempunyai 256 jaringan baru yaitu :
192.168.0.xxx, 192.168.1.xxx, 192.168.2.xxx, 192.168.3.xxx hingga 192.168.255.xxx dengan netmash 255.255.255.0.
menunjukkan hostID antara 0-255xxx
Biasa 192.168.0 menunjukkan NetID dan 24ditulis dengan 192.168.0/24 menunjukkan subnetmask (jumlah bit yang bernilai 1 di subnetmask).
Dengan teknik ini kita bisa mengalokasikan IP address kelas B menjadi sekian banyak jaringan yang berukuran sama.

Cara perhitungan subnet berdasarkan jumlah host adalah sebagai berikut :

1. Ubah IP dan netmask menjadi biner
11000000.10101000.00000000.00000000IP : 192.168.1.0
11111111.11111111. 11111111.00000000Netmask : 255.255.255.0
16 bit.Panjang hostID kita adalah yang netmasknya semua 0
2. Memilih jumlah host terbanyak dalam suatu jaringan dan rubah menjadi biner.
Misal dalam jaringan kita membutuhkan host 25 maka menjadi 11001.
3. Hitung jumlah bit yang dibutuhkan angka biner pada nomor 1. Dan angka inilah nanti sebagai jumlah host dalam jaringan kita.
Jumlah host 25 menjadi biner 11001 dan jumlah bitnya adalah 5.
4. Rubah netmask jaringan kita dengan cara menyisakan angka 0 sebanyak jumlah perhitungan nomor 3.
Jadi netmasknya baru adalah 11111111.11111111.11111111.11100000
Identik dengan 255.255.255.224 jika didesimalkan.
Jadi netmask jaringan berubah dan yang awalnya hanya satu jaringan dengan range IP dari 1 -254 menjadi 8 jaringan, dengan setiap jaringan ada 30 host/komputer

Alokasi Range IP
1 192.168.1.0 – 192.168.1.31
2 192.168.1.32 – 192.168.1.63
3 192.168.1.64 – 192.168.1.95
4 192.168.1.96 – 192.168.1.127
5 192.168.1.128 – 192.168.1.159
6 192.168.1.160 – 192.168.1.191
7 192.168.1.192 – 192.168.1.223
8 192.168.1.224 – 192.168.1.255

Nomor IP awal dan akhir setiap subnet tidak bisa dipakai. Awal dipakai ID Jaringan (NetID) dan akhir sebagai broadcast.
Misal jaringan A 192.168.1.0 sebagai NetID dan 192.168.1.31 sebagai broadcast dan range IP yang bisa dipakai 192.168.1.1-192.168.1.30.
Diposting oleh LeBay'Z
OSI (Open System Interconnection)
Model OSI adalah suatu dekripsi abstrak mengenai desain lapisan-lapisan komunikasi dan protokol jaringan komputer yang dikembangkan sebagai bagian dari inisiatif Open Systems Interconnection (OSI). Model ini disebut juga dengan model “Tujuh lapisan OSI” (OSI seven layer model).
Ketujuh lapisan dalam model ini adalah:

Lapisan fisik (physical layer)
Physical Layer berfungsi dalam pengiriman raw bit ke channel komunikasi. Masalah desain yang harus diperhatikan disini adalah memastikan bahwa bila satu sisi mengirim data 1 bit, data tersebut harus diterima oleh sisi lainnya sebagai 1 bit pula, dan bukan 0 bit. Pertanyaan yang timbul dalam hal ini adalah : berapa volt yang perlu digunakan untuk menyatakan nilai 1? dan berapa volt pula yang diperlukan untuk angka 0?. Diperlukan berapa mikrosekon suatu bit akan habis? Apakah transmisi dapat diproses secara simultan pada kedua arahnya? Berapa jumlah pin yang dimiliki jaringan dan apa kegunaan masing-masing pin? Secara umum masalah-masalah desain yang ditemukan di sini berhubungan secara mekanik, elektrik dan interface prosedural, dan media fisik yang berada di bawah physical layer.
Lapisan koneksi data (data link layer)
Tugas utama data link layer adalah sebagai fasilitas transmisi raw data dan mentransformasi data tersebut ke saluran yang bebas dari kesalahan transmisi. Sebelum diteruskan kenetwork layer, data link layer melaksanakan tugas ini dengan memungkinkan pengirim memecag-mecah data input menjadi sejumlah data frame (biasanya berjumlah ratusan atau ribuan byte). Kemudian data link layer mentransmisikan frame tersebut secara berurutan, dan memproses acknowledgement frame yang dikirim kembali oleh penerima. Karena physical layer menerima dan mengirim aliran bit tanpa mengindahkan arti atau arsitektur frame, maka tergantung pada data link layer-lah untuk membuat dan mengenali batas-batas frame itu. Hal ini bisa dilakukan dengan cara membubuhkan bit khusus ke awal dan akhir frame. Bila secara insidental pola-pola bit ini bisa ditemui pada data, maka diperlukan perhatian khusus untuk menyakinkan bahwa pola tersebut tidak secara salah dianggap sebagai batas-batas frame.
Lapisan jaringan (network layer)
Network layer berfungsi untuk pengendalian operasi subnet. Masalah desain yang penting adalah bagaimana caranya menentukan route pengiriman paket dari sumber ke tujuannya. Route dapat didasarkan pada table statik yang “dihubungkan ke” network. Route juga dapat ditentukan pada saat awal percakapan misalnya session terminal. Terakhir, route dapat juga sangat dinamik, dapat berbeda bagi setiap paketnya. Oleh karena itu, route pengiriman sebuah paket tergantung beban jaringan saat itu.
Lapisan transpor (transport layer)

Fungsi dasar transport layer adalah menerima data dari session layer, memecah data menjadi bagian-bagian yang lebih kecil bila perlu, meneruskan data ke network layer, dan menjamin bahwa semua potongan data tersebut bisa tiba di sisi lainnya dengan benar. Selain itu, semua hal tersebut harus dilaksanakan secara efisien, dan bertujuan dapat melindungi layer-layer bagian atas dari perubahan teknologi hardware yang tidak dapat dihindari.
Dalam keadaan normal, transport layer membuat koneksi jaringan yang berbeda bagi setiap koneksi transport yang diperlukan oleh session layer. Bila koneksi transport memerlukan throughput yang tinggi, maka transport layer dapat membuat koneksi jaringan yang banyak. Transport layer membagi-bagi pengiriman data ke sejumlah jaringan untuk meningkatkan throughput. Di lain pihak, bila pembuatan atau pemeliharaan koneksi jaringan cukup mahal, transport layer dapat menggabungkan beberapa koneksi transport ke koneksi jaringan yang sama. Hal tersebut dilakukan untuk membuat penggabungan ini tidak terlihat oleh session layer.
Transport layer juga menentukan jenis layanan untuk session layer, dan pada gilirannya jenis layanan bagi para pengguna jaringan. Jenis transport layer yang paling populer adalah saluran error-free point to point yang meneruskan pesan atau byte sesuai dengan urutan pengirimannya. Akan tetapi, terdapat pula jenis layanan transport lainnya. Layanan tersebut adalah transport pesan terisolasi yang tidak menjamin urutan pengiriman, dan membroadcast pesan-pesan ke sejumlah tujuan. Jenis layanan ditentukan pada saat koneksi dimulai.
Lapisan sesi (session layer)
Session layer mengijinkan para pengguna untuk menetapkan session dengan pengguna lainnya. Sebuah session selain memungkinkan transport data biasa, seperti yang dilakukan oleh transport layer, juga menyediakan layanan yang istimewa untuk aplikasi-aplikasi tertentu. Sebuah session digunakan untuk memungkinkan seseorang pengguna log ke remote timesharing system atau untuk memindahkan file dari satu mesin kemesin lainnya.
Sebuah layanan session layer adalah untuk melaksanakan pengendalian dialog. Session dapat memungkinkan lalu lintas bergerak dalam bentuk dua arah pada suatu saat, atau hanya satu arah saja. Jika pada satu saat lalu lintas hanya satu arah saja (analog dengan rel kereta api tunggal), session layer membantu untuk menentukan giliran yang berhak menggunakan saluran pada suatu saat.
Layanan session di atas disebut manajemen token. Untuk sebagian protokol, adalah penting untuk memastikan bahwa kedua pihak yang bersangkutan tidak melakukan operasi pada saat yang sama. Untuk mengatur aktivitas ini, session layer menyediakan token-token yang dapat digilirkan. Hanya pihak yang memegang token yang diijinkan melakukan operasi kritis.
Layanan session lainnya adalah sinkronisasi. Ambil contoh yang dapat terjadi ketika mencoba transfer file yang berdurasi 2 jam dari mesin yang satu ke mesin lainnya dengan kemungkinan mempunyai selang waktu 1 jam antara dua crash yang dapat terjadi. Setelah masing-masing transfer dibatalkan, seluruh transfer mungkin perlu diulangi lagi dari awal, dan mungkin saja mengalami kegagalan lain. Untuk mengurangi kemungkinan terjadinya masalah ini, session layer dapat menyisipkan tanda tertentu ke aliran data. Karena itu bila terjadi crash, hanya data yang berada sesudah tanda tersebut yang akan ditransfer ulang.
Lapisan presentasi (presentation layer)

Pressentation layer melakukan fungsi-fungsi tertentu yang diminta untuk menjamin penemuan sebuah penyelesaian umum bagi masalah tertentu. Pressentation Layer tidak mengijinkan pengguna untuk menyelesaikan sendiri suatu masalah. Tidak seperti layer-layer di bawahnya yang hanya melakukan pemindahan bit dari satu tempat ke tempat lainnya, presentation layer memperhatikan syntax dan semantik informasi yang dikirimkan.
Satu contoh layanan pressentation adalah encoding data. Kebanyakan pengguna tidak memindahkan string bit biner yang random. Para pengguna saling bertukar data sperti nama orang, tanggal, jumlah uang, dan tagihan. Item-item tersebut dinyatakan dalam bentuk string karakter, bilangan interger, bilangan floating point, struktur data yang dibentuk dari beberapa item yang lebih sederhana. Terdapat perbedaan antara satu komputer dengan komputer lainnya dalam memberi kode untuk menyatakan string karakter (misalnya, ASCII dan Unicode), integer (misalnya komplemen satu dan komplemen dua), dan sebagainya. Untuk memungkinkan dua buah komputer yang memiliki presentation yang berbeda untuk dapat berkomunikasi, struktur data yang akan dipertukarkan dapat dinyatakan dengan cara abstrak, sesuai dengan encoding standard yang akan digunakan “pada saluran”. Presentation layer mengatur data-struktur abstrak ini dan mengkonversi dari representation yang digunakan pada sebuah komputer menjadi representation standard jaringan, dan sebaliknya.
Lapisan aplikasi (application layer)
Application layer terdiri dari bermacam-macam protokol. Misalnya terdapat ratusan jenis terminal yang tidak kompatibel di seluruh dunia. Ambil keadaan dimana editor layar penuh yang diharapkan bekerja pada jaringan dengan bermacam-macam terminal, yang masing-masing memiliki layout layar yang berlainan, mempunyai cara urutan penekanan tombol yang berbeda untuk penyisipan dan penghapusan teks, memindahkan sensor dan sebagainya.




Konsep Dasar 7 Layer OSI
Artikel Informatika





Model referensi OSI (Open System Interconnection) menggambarkan bagaimana informasi dari suatu software aplikasi di sebuah komputer berpindah melewati sebuah media jaringan ke suatu software aplikasi di komputer lain. Model referensi OSI secara konseptual terbagi ke dalam 7 lapisan dimana masing-masing lapisan memiliki fungsi jaringan yang spesifik. Model ini diciptakan berdasarkan sebuah proposal yang dibuat oleh the International Standards Organization (ISO) sebagai langkah awal menuju standarisasi protokol internasional yang digunakan pada berbagai layer . Model ini disebut ISO OSI (Open System Interconnection) Reference Model karena model ini ditujukan bagi pengkoneksian open system. Open System dapat diartikan sebagai suatu sistem yang terbuka untuk berkomunikasi dengan sistem-sistem lainnya. Untuk ringkas-nya, kita akan menyebut model tersebut sebagai model OSI.
Model OSI memiliki tujuh layer. Prinsip-prinsip yang digunakan bagi ketujuh layer tersebut adalah :

1. Sebuah layer harus dibuat bila diperlukan tingkat abstraksi yang berbeda.
2. Setiap layer harus memiliki fungsi-fungsi tertentu.
3. Fungsi setiap layer harus dipilih dengan teliti sesuai dengan ketentuan standar protocol internasional.
4. Batas-batas layer diusahakan agar meminimalkan aliran informasi yang melewati interface.
5. Jumlah layer harus cukup banyak, sehingga fungsi-fungsi yang berbeda tidak perlu disatukan dalam satu layer diluar keperluannya. Akan tetapi jumlah layer juga harus diusahakan sesedikit mungkin sehingga arsitektur jaringan tidak menjadi sulit dipakai.



Di bawah ini kita membahas setiap layer pada model OSI secara berurutan, dimulai dari layer terbawah. Perlu dicatat bahwa model OSI itu sendiri bukanlah merupakan arsitektur jaringan, karena model ini tidak menjelaskan secara pasti layanan dan protokolnya untuk digunakan pada setiap layernya. Model OSI hanya menjelaskan tentang apa yang harus dikerjakan oleh sebuah layer. Akan tetapi ISO juga telah membuat standard untuk semua layer, walaupun standard-standard ini bukan merupakan model referensi itu sendiri. Setiap layer telah dinyatakan sebagai standard internasional yang terpisah.

1.Karakteristik Lapisan OSI

Ke tujuh lapisan dari model referensi OSI dapat dibagi ke dalam dua kategori, yaitu lapisan atas dan lapisan bawah.

Lapisan atas dari model OSI berurusan dengan persoalan aplikasi dan pada umumnya diimplementasi hanya pada software. Lapisan tertinggi (lapisan applikasi) adalah lapisan penutup sebelum ke pengguna (user), keduanya, pengguna dan lapisan aplikasi saling berinteraksi proses dengan software aplikasi yang berisi sebuah komponen komunikasi. Istilah lapisan atas kadang-kadang digunakan untuk menunjuk ke beberapa lapisan atas dari lapisan lapisan yang lain di model OSI.
Lapisan bawah dari model OSI mengendalikan persoalan transport data. Lapisan fisik dan lapisan data link diimplementasikan ke dalam hardware dan software. Lapisan-lapisan bawah yang lain pada umumnya hanya diimplementasikan dalam software. Lapisan terbawah, yaitu lapisan fisik adalah lapisan penutup bagi media jaringan fisik (misalnya jaringan kabel), dan sebagai penanggung jawab bagi penempatan informasi pada media jaringan. Tabel berikut ini menampilkan pemisahan kedua lapisan tersebut pada lapisan-lapisan model OSI.


2.Protokol

Model OSI menyediakan secara konseptual kerangka kerja untuk komunikasi antar komputer, tetapi model ini bukan merupakan metoda komunikasi. Sebenarnya komunikasi dapat terjadi karena menggunakan protokol komunikasi. Di dalam konteks jaringan data, sebuah protokol adalah suatu aturan formal dan kesepakatan yang menentukan bagaimana komputer bertukar informasi melewati sebuah media jaringan. Sebuah protokol mengimplementasikan salah satu atau lebih dari lapisan-lapisan OSI. Sebuah variasi yang lebar dari adanya protokol komunikasi, tetapi semua memelihara pada salah satu aliran group: protokol LAN, protokol WAN, protokol jaringan, dan protokol routing. Protokol LAN beroperasi pada lapisan fisik dan data link dari model OSI dan mendefinisikan komunikasi di atas macam-macam media LAN. Protokol WAN beroperasi pada ketiga lapisan terbawah dari model OSI dan mendefinisikan komunikasi di atas macam-macam WAN. Protokol routing adalah protokol lapisan jaringan yang bertanggung jawab untuk menentukan jalan dan pengaturan lalu lintas. Akhirnya protokol jaringan adalah berbagai protokol dari lapisan teratas yang ada dalam sederetan protokol.

Lapisan-lapisan Model OSI

1.Physical Layer

Physical Layer berfungsi dalam pengiriman raw bit ke channel komunikasi. Masalah desain yang harus diperhatikan disini adalah memastikan bahwa bila satu sisi mengirim data 1 bit, data tersebut harus diterima oleh sisi lainnya sebagai 1 bit pula, dan bukan 0 bit. Pertanyaan yang timbul dalam hal ini adalah : berapa volt yang perlu digunakan untuk menyatakan nilai 1? dan berapa volt pula yang diperlukan untuk angka 0?. Diperlukan berapa mikrosekon suatu bit akan habis? Apakah transmisi dapat diproses secara simultan pada kedua arahnya? Berapa jumlah pin yang dimiliki jaringan dan apa kegunaan masing-masing pin? Secara umum masalah-masalah desain yang ditemukan di sini berhubungan secara mekanik, elektrik dan interface prosedural, dan media fisik yang berada di bawah physical layer.

2.Data Link Layer

Tugas utama data link layer adalah sebagai fasilitas transmisi raw data dan mentransformasi data tersebut ke saluran yang bebas dari kesalahan transmisi. Sebelum diteruskan kenetwork layer, data link layer melaksanakan tugas ini dengan memungkinkan pengirim memecag-mecah data input menjadi sejumlah data frame (biasanya berjumlah ratusan atau ribuan byte). Kemudian data link layer mentransmisikan frame tersebut secara berurutan, dan memproses acknowledgement frame yang dikirim kembali oleh penerima. Karena physical layer menerima dan mengirim aliran bit tanpa mengindahkan arti atau arsitektur frame, maka tergantung pada data link layer-lah untuk membuat dan mengenali batas-batas frame itu. Hal ini bisa dilakukan dengan cara membubuhkan bit khusus ke awal dan akhir frame. Bila secara insidental pola-pola bit ini bisa ditemui pada data, maka diperlukan perhatian khusus untuk menyakinkan bahwa pola tersebut tidak secara salah dianggap sebagai batas-batas frame.

Terjadinya noise pada saluran dapat merusak frame. Dalam hal ini, perangkat lunak data link layer pada mesin sumber dapat mengirim kembali frame yang rusak tersebut. Akan tetapi transmisi frame sama secara berulang-ulang bisa menimbulkan duplikasi frame. Frame duplikat perlu dikirim apabila acknowledgement frame dari penerima yang dikembalikan ke pengirim telah hilang. Tergantung pada layer inilah untuk mengatasi masalah-masalah yang disebabkan rusaknya, hilangnya dan duplikasi frame. Data link layer menyediakan beberapa kelas layanan bagi network layer. Kelas layanan ini dapat dibedakan dalam hal kualitas dan harganya.

Masalah-masalah lainnya yang timbul pada data link layer (dan juga sebagian besar layer-layer di atasnya) adalah mengusahakan kelancaran proses pengiriman data dari pengirim yang cepat ke penerima yang lambat. Mekanisme pengaturan lalu-lintas data harus memungkinkan pengirim mengetahui jumlah ruang buffer yang dimiliki penerima pada suatu saat tertentu. Seringkali pengaturan aliran dan penanganan error ini dilakukan secara terintegrasi.

Saluran yang dapat mengirim data pada kedua arahnya juga bisa menimbulkan masalah. Sehingga dengan demikian perlu dijadikan bahan pertimbangan bagi software data link layer. Masalah yang dapat timbul di sini adalah bahwa frame-frame acknoeledgement yang mengalir dari A ke B bersaing saling mendahului dengan aliran dari B ke A. Penyelesaian yang terbaik (piggy backing) telah bisa digunakan; nanti kita akan membahasnya secara mendalam.

Jaringan broadcast memiliki masalah tambahan pada data link layer. Masalah tersebut adalah dalam hal mengontrol akses ke saluran yang dipakai bersama. Untuk mengatasinya dapat digunakan sublayer khusus data link layer, yang disebut medium access sublayer.

Masalah mengenai data link control akan diuraikan lebih detail lagi pada bab tiga.

3.Network Layer

Network layer berfungsi untuk pengendalian operasi subnet. Masalah desain yang penting adalah bagaimana caranya menentukan route pengiriman paket dari sumber ke tujuannya. Route dapat didasarkan pada table statik yang “dihubungkan ke” network. Route juga dapat ditentukan pada saat awal percakapan misalnya session terminal. Terakhir, route dapat juga sangat dinamik, dapat berbeda bagi setiap paketnya. Oleh karena itu, route pengiriman sebuah paket tergantung beban jaringan saat itu.
Bila pada saat yang sama dalam sebuah subnet terdapat terlalu banyak paket, maka ada kemungkinan paket-paket tersebut tiba pada saat yang bersamaan. Hal ini dapat menyebabkan terjadinya bottleneck. Pengendalian kemacetan seperti itu juga merupakan tugas network layer.

Karena operator subnet mengharap bayaran yang baik atas tugas pekerjaannya. seringkali terdapat beberapa fungsi accounting yang dibuat pada network layer. Untuk membuat informasi tagihan, setidaknya software mesti menghitung jumlah paket atau karakter atau bit yang dikirimkan oleh setiap pelanggannya. Accounting menjadi lebih rumit, bilamana sebuah paket melintasi batas negara yang memiliki tarip yang berbeda.
Perpindahan paket dari satu jaringan ke jaringan lainnya juga dapat menimbulkan masalah yang tidak sedikit. Cara pengalamatan yang digunakan oleh sebuah jaringan dapat berbeda dengan cara yang dipakai oleh jaringan lainnya. Suatu jaringan mungkin tidak dapat menerima paket sama sekali karena ukuran paket yang terlalu besar. Protokolnyapun bisa berbeda pula, demikian juga dengan yang lainnya. Network layer telah mendapat tugas untuk mengatasi semua masalah seperti ini, sehingga memungkinkan jaringan-jaringan yang berbeda untuk saling terinterkoneksi.

4.Transport Layer

Fungsi dasar transport layer adalah menerima data dari session layer, memecah data menjadi bagian-bagian yang lebih kecil bila perlu, meneruskan data ke network layer, dan menjamin bahwa semua potongan data tersebut bisa tiba di sisi lainnya dengan benar. Selain itu, semua hal tersebut harus dilaksanakan secara efisien, dan bertujuan dapat melindungi layer-layer bagian atas dari perubahan teknologi hardware yang tidak dapat dihindari.

Dalam keadaan normal, transport layer membuat koneksi jaringan yang berbeda bagi setiap koneksi transport yang diperlukan oleh session layer. Bila koneksi transport memerlukan throughput yang tinggi, maka transport layer dapat membuat koneksi jaringan yang banyak. Transport layer membagi-bagi pengiriman data ke sejumlah jaringan untuk meningkatkan throughput. Di lain pihak, bila pembuatan atau pemeliharaan koneksi jaringan cukup mahal, transport layer dapat menggabungkan beberapa koneksi transport ke koneksi jaringan yang sama. Hal tersebut dilakukan untuk membuat penggabungan ini tidak terlihat oleh session layer.

Transport layer juga menentukan jenis layanan untuk session layer, dan pada gilirannya jenis layanan bagi para pengguna jaringan. Jenis transport layer yang paling populer adalah saluran error-free point to point yang meneruskan pesan atau byte sesuai dengan urutan pengirimannya. Akan tetapi, terdapat pula jenis layanan transport lainnya. Layanan tersebut adalah transport pesan terisolasi yang tidak menjamin urutan pengiriman, dan membroadcast pesan-pesan ke sejumlah tujuan. Jenis layanan ditentukan pada saat koneksi dimulai.

Transport layer merupakan layer end to end sebenarnya, dari sumber ke tujuan. Dengan kata lain, sebuah program pada mesin sumber membawa percakapan dengan program yang sama dengan pada mesin yang dituju. Pada layer-layer bawah, protokol terdapat di antara kedua mesin dan mesin-mesin lain yang berada didekatnya. Protokol tidak terdapat pada mesin sumber terluar atau mesin tujuan terluar, yang mungkin dipisahkan oleh sejumlah router. Perbedaan antara layer 1 sampai 3 yang terjalin, dan layer 4 sampai 7 yang end to end. Hal ini dapat dijelaskan seperti pada gambar 2-1.

Sebagai tambahan bagi penggabungan beberapa aliran pesan ke satu channel, transport layer harus hati-hati dalam menetapkan dan memutuskan koneksi pada jaringan. Proses ini memerlukan mekanisma penamaan, sehingga suatu proses pada sebuah mesin mempunyai cara untuk menerangkan dengan siapa mesin itu ingin bercakap-cakap. Juga harus ada mekanisme untuk mengatur arus informasi, sehingga arus informasi dari host yang cepat tidak membanjiri host yang lambat. Mekanisme seperti itu disebut pengendalian aliran dan memainkan peranan penting pada transport layer (juga pada layer-layer lainnya). Pengendalian aliran antara host dengan host berbeda dengan pengendalian aliran router dengan router. Kita akan mengetahui nanti bahwa prinsip-prinsip yang sama digunakan untuk kedua jenis pengendalian tersebut.

5.Session Layer

Session layer mengijinkan para pengguna untuk menetapkan session dengan pengguna lainnya. Sebuah session selain memungkinkan transport data biasa, seperti yang dilakukan oleh transport layer, juga menyediakan layanan yang istimewa untuk aplikasi-aplikasi tertentu. Sebuah session digunakan untuk memungkinkan seseorang pengguna log ke remote timesharing system atau untuk memindahkan file dari satu mesin kemesin lainnya.

Sebuah layanan session layer adalah untuk melaksanakan pengendalian dialog. Session dapat memungkinkan lalu lintas bergerak dalam bentuk dua arah pada suatu saat, atau hanya satu arah saja. Jika pada satu saat lalu lintas hanya satu arah saja (analog dengan rel kereta api tunggal), session layer membantu untuk menentukan giliran yang berhak menggunakan saluran pada suatu saat.

Layanan session di atas disebut manajemen token. Untuk sebagian protokol, adalah penting untuk memastikan bahwa kedua pihak yang bersangkutan tidak melakukan operasi pada saat yang sama. Untuk mengatur aktivitas ini, session layer menyediakan token-token yang dapat digilirkan. Hanya pihak yang memegang token yang diijinkan melakukan operasi kritis.

Layanan session lainnya adalah sinkronisasi. Ambil contoh yang dapat terjadi ketika mencoba transfer file yang berdurasi 2 jam dari mesin yang satu ke mesin lainnya dengan kemungkinan mempunyai selang waktu 1 jam antara dua crash yang dapat terjadi. Setelah masing-masing transfer dibatalkan, seluruh transfer mungkin perlu diulangi lagi dari awal, dan mungkin saja mengalami kegagalan lain. Untuk mengurangi kemungkinan terjadinya masalah ini, session layer dapat menyisipkan tanda tertentu ke aliran data. Karena itu bila terjadi crash, hanya data yang berada sesudah tanda tersebut yang akan ditransfer ulang.

6.Pressentation Layer

Pressentation layer melakukan fungsi-fungsi tertentu yang diminta untuk menjamin penemuan sebuah penyelesaian umum bagi masalah tertentu. Pressentation Layer tidak mengijinkan pengguna untuk menyelesaikan sendiri suatu masalah. Tidak seperti layer-layer di bawahnya yang hanya melakukan pemindahan bit dari satu tempat ke tempat lainnya, presentation layer memperhatikan syntax dan semantik informasi yang dikirimkan.

Satu contoh layanan pressentation adalah encoding data. Kebanyakan pengguna tidak memindahkan string bit biner yang random. Para pengguna saling bertukar data sperti nama orang, tanggal, jumlah uang, dan tagihan. Item-item tersebut dinyatakan dalam bentuk string karakter, bilangan interger, bilangan floating point, struktur data yang dibentuk dari beberapa item yang lebih sederhana. Terdapat perbedaan antara satu komputer dengan komputer lainnya dalam memberi kode untuk menyatakan string karakter (misalnya, ASCII dan Unicode), integer (misalnya komplemen satu dan komplemen dua), dan sebagainya. Untuk memungkinkan dua buah komputer yang memiliki presentation yang berbeda untuk dapat berkomunikasi, struktur data yang akan dipertukarkan dapat dinyatakan dengan cara abstrak, sesuai dengan encoding standard yang akan digunakan “pada saluran”. Presentation layer mengatur data-struktur abstrak ini dan mengkonversi dari representation yang digunakan pada sebuah komputer menjadi representation standard jaringan, dan sebaliknya.

7.Application Layer

Application layer terdiri dari bermacam-macam protokol. Misalnya terdapat ratusan jenis terminal yang tidak kompatibel di seluruh dunia. Ambil keadaan dimana editor layar penuh yang diharapkan bekerja pada jaringan dengan bermacam-macam terminal, yang masing-masing memiliki layout layar yang berlainan, mempunyai cara urutan penekanan tombol yang berbeda untuk penyisipan dan penghapusan teks, memindahkan sensor dan sebagainya.

Suatu cara untuk mengatasi masalah seperti di ata, adalah dengan menentukan terminal virtual jaringan abstrak, serhingga editor dan program-program lainnya dapat ditulis agar saling bersesuaian. Untuk menangani setiap jenis terminal, satu bagian software harus ditulis untuk memetakan fungsi terminal virtual jaringan ke terminal sebenarnya. Misalnya, saat editor menggerakkan cursor terminal virtual ke sudut layar kiri, software tersebut harus mengeluarkan urutan perintah yang sesuai untuk mencapai cursor tersebut. Seluruh software terminal virtual berada pada application layer.

Fungsi application layer lainnya adalah pemindahan file. Sistem file yang satu dengan yang lainnya memiliki konvensi penamaan yang berbeda, cara menyatakan baris-baris teks yang berbeda, dan sebagainya. Perpindahan file dari sebuah sistem ke sistem lainnya yang berbeda memerlukan penanganan untuk mengatasi adanya ketidak-kompatibelan ini. Tugas tersebut juga merupakan pekerjaan appication layer, seperti pada surat elektronik, remote job entry, directory lookup, dan berbagai fasilitas bertujuan umum dan fasilitas bertujuan khusus lainnya.

Transmisi Data Pada Model OSI

Proses pengiriman memiliki data yang akan dikirimkan ke proses penerima. Proses pengirim menyerahkan data ke application layer, yang kemudian menambahkan aplication header, AH (yang mungkin juga kosong), ke ujung depannya dan menyerahkan hasilnya ke presentation layer.

Pressentation layer dapat membentuk data ini dalam berbagai cara dan mungkin saja menambahkan sebuah header di ujung depannya, yang diberikan oleh session layer. Penting untuk diingat bahwa presentation layer tidak menyadari tentang bagian data yang mana yang diberi tanda AH oleh application layer yang merupakan data pengguna yang sebenarnya.

Proses pemberian header ini berulang terus sampai data tersebut mencapai physical layer, dimana data akan ditransmisikan ke mesin lainnya. Pada mesin tersebut, semua header tadi dicopoti satu per satu sampai mencapai proses penerimaan.
Yang menjadi kunci di sini adalah bahwa walaupun transmisi data aktual berbentuk vertikal seperti pada gambar 1-17, setiap layer diprogram seolah-olah sebagai transmisi yang bersangkutan berlangsung secara horizontal. Misalnya, saat transport layer pengiriman mendapatkan pesan dari session layer, maka transport layer akan membubuhkan header transport layer dan mengirimkannya ke transport layer penerima.
Diposting oleh LeBay'Z
OSI (Open Systems Interconnection)
Open Systems Interconnection (disingkat OSI) adalah suatu upaya standardisasi jaringan komputer yang dimulai pada tahun 1982 oleh International Organization for Standardization (ISO) bersama Internationa Telecommunication Union Telecommunication Standardization Sector (ITU-T).
Masalah utama dalam komunikasi antar komputer dari vendor yang berbeda adalah karena mereka mengunakan protocol dan format data yang berbeda-beda. Untuk mengatasi ini, International Organization for Standardization (ISO) membuat suatu arsitektur komunikasi yang dikenal sebagai Open System Interconnection (OSI) model yang mendefinisikan standar untuk menghubungkan komputer-komputer dari vendor-vendor yang berbeda.

Sebelum OSI, sistem jaringan komputer sangat tergantung kepada pemasok (vendor). OSI berupaya membentuk standar umum jaringan komputer untuk menunjang interoperatibilitas antar pemasok yang berbeda. Dalam suatu jaringan yang besar biasanya terdapat banyak protokol jaringan yang berbeda. Tidak adanya suatu protokol yang sama, membuat banyak perangkat tidak bisa saling berkomunikasi.
Model OSI adalah salah satu kemajuan konsep yang paling penting dalam jaringan komputer. Model ini membuat suatu ide model standar untuk lapisan protokol (protocol layers), dan mendefinisikan interoperatibilitas antara perangkat jaringan dan perangkat lunak.
Model OSI adalah suatu dekripsi abstrak mengenai desain lapisan-lapisan komunikasi dan protokol jaringan komputer yang dikembangkan sebagai bagian dari inisiatif Open Systems Interconnection (OSI). Model ini disebut juga dengan model “Tujuh lapisan OSI” (OSI seven layer model).
Ketujuh lapisan dalam model ini adalah:

Lapisan fisik (physical layer)
Physical Layer berfungsi dalam pengiriman raw bit ke channel komunikasi. Masalah desain yang harus diperhatikan disini adalah memastikan bahwa bila satu sisi mengirim data 1 bit, data tersebut harus diterima oleh sisi lainnya sebagai 1 bit pula, dan bukan 0 bit. Pertanyaan yang timbul dalam hal ini adalah : berapa volt yang perlu digunakan untuk menyatakan nilai 1? dan berapa volt pula yang diperlukan untuk angka 0?. Diperlukan berapa mikrosekon suatu bit akan habis? Apakah transmisi dapat diproses secara simultan pada kedua arahnya? Berapa jumlah pin yang dimiliki jaringan dan apa kegunaan masing-masing pin? Secara umum masalah-masalah desain yang ditemukan di sini berhubungan secara mekanik, elektrik dan interface prosedural, dan media fisik yang berada di bawah physical layer.
Lapisan koneksi data (data link layer)
Tugas utama data link layer adalah sebagai fasilitas transmisi raw data dan mentransformasi data tersebut ke saluran yang bebas dari kesalahan transmisi. Sebelum diteruskan kenetwork layer, data link layer melaksanakan tugas ini dengan memungkinkan pengirim memecag-mecah data input menjadi sejumlah data frame (biasanya berjumlah ratusan atau ribuan byte). Kemudian data link layer mentransmisikan frame tersebut secara berurutan, dan memproses acknowledgement frame yang dikirim kembali oleh penerima. Karena physical layer menerima dan mengirim aliran bit tanpa mengindahkan arti atau arsitektur frame, maka tergantung pada data link layer-lah untuk membuat dan mengenali batas-batas frame itu. Hal ini bisa dilakukan dengan cara membubuhkan bit khusus ke awal dan akhir frame. Bila secara insidental pola-pola bit ini bisa ditemui pada data, maka diperlukan perhatian khusus untuk menyakinkan bahwa pola tersebut tidak secara salah dianggap sebagai batas-batas frame.
Lapisan jaringan (network layer)
Network layer berfungsi untuk pengendalian operasi subnet. Masalah desain yang penting adalah bagaimana caranya menentukan route pengiriman paket dari sumber ke tujuannya. Route dapat didasarkan pada table statik yang “dihubungkan ke” network. Route juga dapat ditentukan pada saat awal percakapan misalnya session terminal. Terakhir, route dapat juga sangat dinamik, dapat berbeda bagi setiap paketnya. Oleh karena itu, route pengiriman sebuah paket tergantung beban jaringan saat itu.
Lapisan transpor (transport layer)
Fungsi dasar transport layer adalah menerima data dari session layer, memecah data menjadi bagian-bagian yang lebih kecil bila perlu, meneruskan data ke network layer, dan menjamin bahwa semua potongan data tersebut bisa tiba di sisi lainnya dengan benar. Selain itu, semua hal tersebut harus dilaksanakan secara efisien, dan bertujuan dapat melindungi layer-layer bagian atas dari perubahan teknologi hardware yang tidak dapat dihindari.
Dalam keadaan normal, transport layer membuat koneksi jaringan yang berbeda bagi setiap koneksi transport yang diperlukan oleh session layer. Bila koneksi transport memerlukan throughput yang tinggi, maka transport layer dapat membuat koneksi jaringan yang banyak. Transport layer membagi-bagi pengiriman data ke sejumlah jaringan untuk meningkatkan throughput. Di lain pihak, bila pembuatan atau pemeliharaan koneksi jaringan cukup mahal, transport layer dapat menggabungkan beberapa koneksi transport ke koneksi jaringan yang sama. Hal tersebut dilakukan untuk membuat penggabungan ini tidak terlihat oleh session layer.
Transport layer juga menentukan jenis layanan untuk session layer, dan pada gilirannya jenis layanan bagi para pengguna jaringan. Jenis transport layer yang paling populer adalah saluran error-free point to point yang meneruskan pesan atau byte sesuai dengan urutan pengirimannya. Akan tetapi, terdapat pula jenis layanan transport lainnya. Layanan tersebut adalah transport pesan terisolasi yang tidak menjamin urutan pengiriman, dan membroadcast pesan-pesan ke sejumlah tujuan. Jenis layanan ditentukan pada saat koneksi dimulai.
Lapisan sesi (session layer)
Session layer mengijinkan para pengguna untuk menetapkan session dengan pengguna lainnya. Sebuah session selain memungkinkan transport data biasa, seperti yang dilakukan oleh transport layer, juga menyediakan layanan yang istimewa untuk aplikasi-aplikasi tertentu. Sebuah session digunakan untuk memungkinkan seseorang pengguna log ke remote timesharing system atau untuk memindahkan file dari satu mesin kemesin lainnya.
Sebuah layanan session layer adalah untuk melaksanakan pengendalian dialog. Session dapat memungkinkan lalu lintas bergerak dalam bentuk dua arah pada suatu saat, atau hanya satu arah saja. Jika pada satu saat lalu lintas hanya satu arah saja (analog dengan rel kereta api tunggal), session layer membantu untuk menentukan giliran yang berhak menggunakan saluran pada suatu saat.
Layanan session di atas disebut manajemen token. Untuk sebagian protokol, adalah penting untuk memastikan bahwa kedua pihak yang bersangkutan tidak melakukan operasi pada saat yang sama. Untuk mengatur aktivitas ini, session layer menyediakan token-token yang dapat digilirkan. Hanya pihak yang memegang token yang diijinkan melakukan operasi kritis.
Layanan session lainnya adalah sinkronisasi. Ambil contoh yang dapat terjadi ketika mencoba transfer file yang berdurasi 2 jam dari mesin yang satu ke mesin lainnya dengan kemungkinan mempunyai selang waktu 1 jam antara dua crash yang dapat terjadi. Setelah masing-masing transfer dibatalkan, seluruh transfer mungkin perlu diulangi lagi dari awal, dan mungkin saja mengalami kegagalan lain. Untuk mengurangi kemungkinan terjadinya masalah ini, session layer dapat menyisipkan tanda tertentu ke aliran data. Karena itu bila terjadi crash, hanya data yang berada sesudah tanda tersebut yang akan ditransfer ulang.

Lapisan presentasi (presentation layer)
Pressentation layer melakukan fungsi-fungsi tertentu yang diminta untuk menjamin penemuan sebuah penyelesaian umum bagi masalah tertentu. Pressentation Layer tidak mengijinkan pengguna untuk menyelesaikan sendiri suatu masalah. Tidak seperti layer-layer di bawahnya yang hanya melakukan pemindahan bit dari satu tempat ke tempat lainnya, presentation layer memperhatikan syntax dan semantik informasi yang dikirimkan.
Satu contoh layanan pressentation adalah encoding data. Kebanyakan pengguna tidak memindahkan string bit biner yang random. Para pengguna saling bertukar data sperti nama orang, tanggal, jumlah uang, dan tagihan. Item-item tersebut dinyatakan dalam bentuk string karakter, bilangan interger, bilangan floating point, struktur data yang dibentuk dari beberapa item yang lebih sederhana. Terdapat perbedaan antara satu komputer dengan komputer lainnya dalam memberi kode untuk menyatakan string karakter (misalnya, ASCII dan Unicode), integer (misalnya komplemen satu dan komplemen dua), dan sebagainya. Untuk memungkinkan dua buah komputer yang memiliki presentation yang berbeda untuk dapat berkomunikasi, struktur data yang akan dipertukarkan dapat dinyatakan dengan cara abstrak, sesuai dengan encoding standard yang akan digunakan “pada saluran”. Presentation layer mengatur data-struktur abstrak ini dan mengkonversi dari representation yang digunakan pada sebuah komputer menjadi representation standard jaringan, dan sebaliknya.
Lapisan aplikasi (application layer)
Application layer terdiri dari bermacam-macam protokol. Misalnya terdapat ratusan jenis terminal yang tidak kompatibel di seluruh dunia. Ambil keadaan dimana editor layar penuh yang diharapkan bekerja pada jaringan dengan bermacam-macam terminal, yang masing-masing memiliki layout layar yang berlainan, mempunyai cara urutan penekanan tombol yang berbeda untuk penyisipan dan penghapusan teks, memindahkan sensor dan sebagainya.
Diposting oleh LeBay'Z
Rabu, 22 Juli 2009 di 22.47 | 0 komentar  
5.Protokol

Protokol adalah aturan-aturan main yang mengatur komunikasi diantara beberapa komputer di dalam sebuah jaringan, aturan itu termasuk di dalamnya petunjuk yang berlaku bagi cara-cara atau metode mengakses sebuah jaringan, topologi fisik, tipe-tipe kabel dan kecepatan transfer data. Protokol-Protokol yang dikenal adalah sebagai berikut:
1. Ethernet
2. Local Talk
3. Token Ring
4. FDDIw
5. ATM

6.IP ADDRESS


1.Pendahuluan
IP address digunakan sebagai alamat dalam hubungan antar host di internet sehingga merupakan sebuah sistem komunikasi yang universal karena merupakan metode pengalamatan yang telah diterima di seluruh dunia. Dengan menentukan IP address berarti kita telah memberikan identitas yang universal bagi setiap interadce komputer. Jika suatu komputer memiliki lebih dari satu interface (misalkan menggunakan dua ethernet) maka kita harus memberi dua IP address untuk komputer tersebut masing-masing untuk setiap interfacenya.
2.Format IP Address
IP address terdiri dari bilangan biner 32 bit yang dipisahkan oleh tanda titik setiap 8 bitnya. Tiap 8 bit ini disebut sebagai oktet. Bentuk IP address dapat dituliskan sebagai berikut :
xxxxxxxx.xxxxxxxx.xxxxxxxx.xxxxxxxx
Jadi IP address ini mempunyai range dari 00000000.00000000.00000000.00000000 sampai 11111111.11111111.11111111.11111111. Notasi IP address dengan bilangan biner seperti ini susah untuk digunakan, sehingga sering ditulis dalam 4 bilangan desimal yang masing-masing dipisahkan oleh 4 buah titik yang lebih dikenal dengan “notasi desimal bertitik”. Setiap bilangan desimal merupakan nilai dari satu oktet IP address. Contoh hubungan suatu IP address dalam format biner dan desimal :




Format IP Address

3.Pembagian Kelas IP Address
Jumlah IP address yang tersedia secara teoritis adalah 255x255x255x255 atau sekitar 4 milyar lebih yang harus dibagikan ke seluruh pengguna jaringan internet di seluruh dunia. Pembagian kelas-kelas ini ditujukan untuk mempermudah alokasi IP Address, baik untuk host/jaringan tertentu atau untuk keperluan tertentu.
IP Address dapat dipisahkan menjadi 2 bagian, yakni bagian network (net ID) dan bagian host (host ID). Net ID berperan dalam identifikasi suatu network dari network yang lain, sedangkan host ID berperan untuk identifikasi host dalam suatu network. Jadi, seluruh host yang tersambung dalam jaringan yang sama memiliki net ID yang sama. Sebagian dari bit-bit bagian awal dari IP Address merupakan network bit/network number, sedangkan sisanya untuk host. Garis pemisah antara bagian network dan host tidak tetap, bergantung kepada kelas network. IP address dibagi ke dalam lima kelas, yaitu kelas A, kelas B, kelas C, kelas D dan kelas E. Perbedaan tiap kelas adalah pada ukuran dan jumlahnya. Contohnya IP kelas A dipakai oleh sedikit jaringan namun jumlah host yang dapat ditampung oleh tiap jaringan sangat besar. Kelas D dan E tidak digunakan secara umum, kelas D digunakan bagi jaringan multicast dan kelas E untuk keprluan eksperimental. Perangkat lunak Internet Protocol menentukan pembagian jenis kelas ini dengan menguji beberapa bit pertama dari IP Address. Penentuan kelas ini dilakukan dengan cara berikut :
Bit pertama IP address kelas A adalah 0, dengan panjang net ID 8 bit dan panjang host ID 24 bit. Jadi byte pertama IP address kelas A mempunyai range dari 0-127. Jadi pada kelas A terdapat 127 network dengan tiap network dapat menampung sekitar 16 juta host (255x255x255). IP address kelas A diberikan untuk jaringan dengan jumlah host yang sangat besar, IP kelas ini dapat dilukiskan pada gambar berikut ini:

IP address kelas A
 Dua bit IP address kelas B selalu diset 10 sehingga byte pertamanya selalu bernilai antara 128-191. Network ID adalah 16 bit pertama dan 16 bit sisanya adalah host ID sehingga kalau ada komputer mempunyai IP address 167.205.26.161, network ID = 167.205 dan host ID = 26.161. Pada. IP address kelas B ini mempunyai range IP dari 128.0.xxx.xxx sampai 191.155.xxx.xxx, yakni berjumlah 65.255 network dengan jumlah host tiap network 255 x 255 host atau sekitar 65 ribu host.

IP address kelas B
 IP address kelas C mulanya digunakan untuk jaringan berukuran kecil seperti LAN. Tiga bit pertama IP address kelas C selalu diset 111. Network ID terdiri dari 24 bit dan host ID 8 bit sisanya sehingga dapat terbentuk sekitar 2 juta network dengan masing-masing network memiliki 256 host.

IP address kelas C
IP address kelas D digunakan untuk keperluan multicasting. 4 bit pertama IP address kelas D selalu diset 1110 sehingga byte pertamanya berkisar antara 224-247, sedangkan bit-bit berikutnya diatur sesuai keperluan multicast group yang menggunakan IP address ini. Dalam multicasting tidak dikenal istilah network ID dan host ID.
IP address kelas E tidak diperuntukkan untuk keperluan umum. 4 bit pertama IP address kelas ini diset 1111 sehingga byte pertamanya berkisar antara 248-255.
Sebagai tambahan dikenal juga istilah Network Prefix, yang digunakan untuk IP address yang menunjuk bagian jaringan.Penulisan network prefix adalah dengan tanda slash “/” yang diikuti angka yang menunjukkan panjang network prefix ini dalam bit. Misal untuk menunjuk satu network kelas B 167.205.xxx.xxx digunakan penulisan 167.205/16. Angka 16 ini merupakan panjang bit untuk network prefix kelas B.
4.Address Khusus
Selain address yang dipergunakan untuk pengenal host, ada beberapa jenis address yang digunakan untuk keperluan khusus dan tidak boleh digunakan untuk pengenal host. Address tersebut adalah:
Network Address. Address ini digunakan untuk mengenali suatu network pada jaringan Internet. Misalkan untuk host dengan IP Address kelas B 167.205.9.35. Tanpa memakai subnet (akan diterangkan kemudian), network address dari host ini adalah 167.205.0.0. Address ini didapat dengan membuat seluruh bit host pada 2 segmen terakhir menjadi 0. Tujuannya adalah untuk menyederhanakan informasi routing pada Internet. Router cukup melihat network address (167.205) untuk menentukan ke router mana datagram tersebut harus dikirimkan. Analoginya mirip dengan dalam proses pengantaran surat, petugas penyortir pada kantor pos cukup melihat kota tujuan pada alamat surat (tidak perlu membaca selutuh alamat) untuk menentukan jalur mana yang harus ditempuh surat tersebut.
Broadcast Address. Address ini digunakan untuk mengirim/menerima informasi yang harus diketahui oleh seluruh host yang ada pada suatu network. Seperti diketahui, setiap datagram IP memiliki header alamat tujuan berupa IP Address dari host yang akan dituju oleh datagram tersebut. Dengan adanya alamat ini, maka hanya host tujuan saja yang memproses datagram tersebut, sedangkan host lain akan mengabaikannya. Bagaimana jika suatu host ingin mengirim datagram kepada seluruh host yang ada pada networknya ? Tidak efisien jika ia harus membuat replikasi datagram sebanyak jumlah host tujuan. Pemakaian bandwidth akan meningkat dan beban kerja host pengirim bertambah, padahal isi datagram-datagram tersebut sama. Oleh karena itu, dibuat konsep broadcast address. Host cukup mengirim ke alamat broadcast, maka seluruh host yang ada pada network akan menerima datagram tersebut. Konsekuensinya, seluruh host pada network yang sama harus memiliki broadcast address yang sama dan address tersebut tidak boleh digunakan sebagai IP Address untuk host tertentu.
Jadi, sebenarnya setiap host memiliki 2 address untuk menerima datagram : pertama adalah IP Addressnya yang bersifat unik dan kedua adalah broadcast address pada network tempat host tersebut berada.
Broadcast address diperoleh dengan membuat bit-bit host pada IP Address menjadi 1. Jadi, untuk host dengan IP address 167.205.9.35 atau 167.205.240.2, broadcast addressnya adalah 167.205.255.255 (2 segmen terakhir dari IP Address tersebut dibuat berharga 11111111.11111111, sehingga secara desimal terbaca 255.255). Jenis informasi yang dibroadcast biasanya adalah informasi routing.
Multicast Address. Kelas address A, B dan C adalah address yang digunakan untuk komunikasi antar host, yang menggunakan datagram-datagram unicast. Artinya, datagram/paket memiliki address tujuan berupa satu host tertentu. Hanya host yang memiliki IP address sama dengan destination address pada datagram yang akan menerima datagram tersebut, sedangkan host lain akan mengabaikannya. Jika datagram ditujukan untuk seluruh host pada suatu jaringan, maka field address tujuan ini akan berisi alamat broadcast dari jaringan yang bersangkutan. Dari dua mode pengiriman ini (unicast dan broadcast), muncul pula mode ke tiga. Diperlukan suatu mode khusus jika suatu host ingin berkomunikasi dengan beberapa host sekaligus (host group), dengan hanya mengirimkan satu datagram saja. Namun berbeda dengan mode broadcast, hanya host-host yang tergabung dalam suatu group saja yang akan menerima datagram ini, sedangkan host lain tidak akan terpengaruh. Oleh karena itu, dikenalkan konsep multicast. Pada konsep ini, setiap group yang menjalankan aplikasi bersama mendapatkan satu multicast address. Struktur kelas multicast address dapat dilihat pada Gambar berikut.

Struktur IP Address Kelas Multicast Address
Untuk keperluan multicast, sejumlah IP Address dialokasikan sebagai multicast address. Jika struktur IP Address mengikuti bentuk 1110xxxx.xxxxxxxx.xxxxxxxx.xxxxxxxx (bentuk desimal 224.0.0.0 sampai 239.255.255.255), maka IP Address merupakan multicast address. Alokasi ini ditujukan untuk keperluan group, bukan untuk host seperti pada kelas A, B dan C. Anggota group adalah host-host yang ingin bergabung dalam group tersebut. Anggota ini juga tidak terbatas pada jaringan di satu subnet, namun bisa mencapai seluruh dunia. Karena menyerupai suatu backbone, maka jaringan muticast ini dikenal pula sebagai Multicast Backbone (Mbone).
5.Aturan Dasar Pemilihan network ID dan host ID
Berikut adalah aturan-aturan dasar dalam menentukan network ID dan host ID yang digunakan :
 Network ID tidak boleh sama dengan 127
Network ID 127 secara default digunakan sebagai alamat loopback yakni IP address yang digunakan oleh suatu komputer untuk menunjuk dirinya sendiri.
 Network ID dan host ID tidak boleh sama dengan 255
Network ID atau host ID 255 akan diartikan sebagai alamat broadcast. ID ini merupakan alamat yang mewakili seluruh jaringan.
 Network ID dan host ID tidak boleh sama dengan 0
IP address dengan host ID 0 diartikan sebagai alamat network. Alamat network digunakan untuk menunjuk suatu jaringn bukan suatu host.
 Host ID harus unik dalam suatu network.
Dalam suatu network tidak boleh ada dua host yang memiliki host ID yang sama
Diposting oleh LeBay'Z
1 Latar belakang dan sejarah jaringan

Sejarah Jaringan Komputer Global/Dunia dimulai pada 1969 ketika Departemen Pertahanan Amerika, U.S. Defense Advanced Research Projects Agency (DARPA) memutuskan untuk mengadakan riset tentang bagaimana caranya menghubungkan sejumlah komputer sehingga membentuk jaringan organik. Program riset ini dikenal dengan nama ARPANET. Pada 1970, sudah lebih dari 10 komputer yang berhasil dihubungkan satu sama lain sehingga mereka bisa saling berkomunikasi dan membentuk sebuah jaringan.

Tahun 1972, Roy Tomlinson berhasil menyempurnakan program e-mail yang ia ciptakan setahun yang lalu untuk ARPANET. Program e-mail ini begitu mudah, sehingga langsung menjadi populer. Pada tahun yang sama, icon @ juga diperkenalkan sebagai lambang
penting yang menunjukan "at" atau "pada". Tahun 1973, jaringan komputer ARPANET mulai dikembangkan meluas ke luar Amerika Serikat. Komputer University College di London merupakan komputer pertama yang ada di luar Amerika yang menjadi anggota jaringan
Arpanet. Pada tahun yang sama, dua orang ahli komputer yakni Vinton Cerf dan Bob Kahn mempresentasikan sebuah gagasan yang lebih besar, yang menjadi cikal bakal pemikiran International Network.

Ide ini dipresentasikan untuk pertama kalinya di Universitas Sussex. Hari bersejarah berikutnya adalah tanggal 26 Maret 1976, ketika Ratu Inggris berhasil mengirimkan e-mail dari Royal Signals and Radar Establishment di Malvern. Setahun kemudian, sudah lebih dari 100 komputer yang bergabung di ARPANET membentuk sebuah jaringan atau network.

Pada 1979, Tom Truscott, Jim Ellis dan Steve Bellovin, menciptakan newsgroups pertama yang diberi nama USENET. Tahun 1981 France Telecom menciptakan gebrakan dengan meluncurkan telpon televisi pertama, di mana orang bisa saling menelpon sambil
berhubungan dengan video link.Karena komputer yang membentuk jaringan semakin hari semakin banyak, maka dibutuhkan sebuah protokol resmi yang diakui oleh
semua jaringan. Pada tahun 1982 dibentuk Transmission Control Protocol atau TCP dan IP yang kini kita kenal semua.

Sementara itu di Eropa muncul jaringan komputer tandingan yang dikenal dengan Eunet, yang menyediakan jasa jaringan komputer di negara-negara Belanda, Inggris, Denmark dan Swedia. Jaringan Eunet menyediakan jasa e-mail dan newsgroup USENET. Untuk menyeragamkan alamat di jaringan komputer yang ada, maka pada tahun 1984 diperkenalkan sistem nama domain, yang kini kita kenal dengan DNS.

Komputer yang tersambung dengan jaringan yang ada sudah melebihi 1000 komputer lebih. Pada 1987 jumlah komputer yang tersambung ke jaringan melonjak 10 kali lipat menjadi 10.000 lebih.Tahun 1988, Jarko Oikarinen dari Finland menemukan dan sekaligus memperkenalkan IRC. Setahun kemudian, jumlah komputer yang saling berhubungan kembali melonjak 10 kali lipat dalam setahun. Tak kurang dari 100.000 komputer kini membentuk sebuah jaringan.

Tahun 1990 adalah tahun yang paling bersejarah, ketika Tim Berners Lee menemukan program editor dan browser yang bisa menjelajah antara satu komputer dengan komputer lainnya, yang membentuk jaringan itu. Program inilah yang disebut www, atau World
Wide Web.

Tahun 1992, komputer yang saling tersambung membentuk jaringan sudah melampaui sejuta komputer, dan di tahun yang sama muncul istilah surfing (menjelajah).
Tahun 1994, situs² dunia maya telah tumbuh menjadi 3.000 alamat halaman, dan untuk pertama kalinya virtual-shopping atau e-retail muncul di situs. Dunia langsung berubah. Di tahun yang sama Yahoo! Didirikan, yang juga sekaligus tahun kelahiran Netscape Navigator 1.0.




2. jenis-jenis jaringan
Ada tiga macam jenis jaringan yaitu:
1. Jaringan LAN(Local Area Network)yaitu sebuah jaringan yang dibatasi oleh are yang relatif kecil,namun pada umunya dibatasi oleh suatu area lingkungan seperti sebuah lab atau perkantoran disebuah gedung,atau sebuah sekolah dan biasanya tidak jauh dari sekitar 1 km persegi.
2.Jaringan MAN(Metropoloian Area Network)yaitu sebuah jaringan yang lebih besar dari pada sebuah jaringan LAN,yaitu misalnya antar suatu wilayah dalam satu propinsi.dalam hal ini jaringan menghubungkan beberapa buah jaringan-jaringan kecil ke dalam lingkungan area yang lebih besar,sebagai sebuah contoh yaitu bank diman beberapa sebuah kantor cabang sebuah bank didalam sebuah kota besar dihubungkan antara satu dengan yang lainnya.
3.Jaringan WAN(Wide Area Network)yaitu suatu jaringan yang memiliki lingkup/lingkupanya sangat luas biasanya sudah menggunakan satelitataupun kabel bawah laut sebagai contoh keseluruhan jaringan BANK BNI yang ada di Indonesia ataupun yang ada di negara-negara lain jaringan inipun dapat dikatakan sebagai internet.




3.topologi jaringan
Topologi jaringan adalah bagian yang menjelaskan hubungan antar komputer yang di bangun berdasarkan kegunaan, keterbatasan resource dan keterbatasan biaya, berarti topologi-topologi jaringan yang ada bisa disesuaikan dengan keadaan di lapangan.
Topologi jaringan ada beberapa bentuk sebagai berikut.
1. Topologi Bus
Topologi ini adalah topologi yang awal di gunakan untuk menghubungkan komputer. Dalam topologi ini masing masing komputer akan terhubung ke satu kabel panjang dengan beberapa terminal, dan pada akhir dari kable harus di akhiri dengan satu terminator. Topologi ini sudah sangat jarang digunakan didalam membangun jaringan komputer biasa karena memiliki beberapa kekurangan diantaranya kemungkinan terjadi nya tabrakan aliran data, jika salah satu perangkat putus atau terjadi kerusakan pada satu bagian komputer maka jaringan langsung tidak akan berfungsi sebelum kerusakan tersebut di atasi.
< ![endif]-->
Gambar topologi bus
Topologi ini awalnya menggunakan kable Coaxial sebagai media pengantar data dan informasi. Tapi pada saat ini topologi ini di dalam membangun jaringan komputer dengan menggunakan kabal serat optik ( fiber optic) akan tetapi digabungkan dengan topologi jaringan yang lain untuk memaksimalkan performanya.
2. Topologi Cincin
Topologi cincin atay yang sering disebut dengan ring topologi adalah topologi jaringan dimana setiap komputer yang terhubung membuat lingkaran. Dengan artian setiap komputer yang terhubung kedalam satu jaringan saling terkoneksi ke dua komputer lainnya sehingga membentuk satu jaringan yang sama dengan bentuk cincin.
< ![endif]-->
Gambar ring topology
Adapun kelebihan dari topologi ini adalah kabel yang digunakan bisa lebih dihemat. Tetapi kekurangan dari topologi ini adalah pengembangan jaringan akan menjadi susah karena setiap komputer akan saling terhubung.
3. Topologi Token Ring
Topologi ini hampir sama dengan topologi ring akan tetapi pembuatannya lebih di sempurnakan. Bisa di lihat dari perbedaan gambar.
< ![endif]-->
Gambar topologi token ring
Didalam gambar jelas terlihat bagaimana pada token ring kable penghubung di buat menjadi lingkaran terlebih dahulu dan nantinya akan di buatkan terminal-terminal untuk masing-masing komputer dan perangkat lain.
4. Topologi Bintang
Topologi bintang atau yang lebih sering disebut dengan topologi star. Pada topologi ini kita sudah menggunakan bantuan alat lain untuk mengkoneksikan jaringan komputer. Contoh alat yang di pakai disini adalah hub, switch, dll.
< ![endif]-->
Gambar topologi star
Pada gambar jelas terlihat satu hub berfungsi sebagai pusat penghubung komputer-komputer yang saling berhubungan. Keuntungan dari topologi ini sangat banyak sekali diantaranya memudahkan admin dalam mengelola jaringan, memudahkan dalam penambahan komputer atau terminal, kemudahan mendeteksi kerusakan dan kesalahan pada jaringan. Tetapi dengan banyak nya kelebihan bukan dengan artian topologi ini tanpa kekurangan. Kekurangannya diantaranya pemborosan terhadap kabel, kontrol yang terpusat pada hub terkadang jadi permasalahan kritis kalau seandainya terjadi kerusakan pada hub maka semua jaringan tidak akan bisa di gunakan.
5. Topologi Pohon
Topologi pohon atau di sebut juga topologi hirarki dan bisa juga disebut topologi bertingkat merupakan topologi yang bisa di gunakan pada jaringan di dalam ruangan kantor yang bertingkat.
< ![endif]--> < ![endif]-->
Gambar topogi pohon (tree)
Pada gambar bisa kita lihat hubungan antar satu komputer dengan komputer lain merupakan percabangan dengan hirarki yang jelas.sentral pusat atau yang berada pada bagian paling atas merupakan sentral yang aktiv sedangkan sentral yang ada di bawahnya adalah sentral yang pasif.
Sampai disini sedikit pemaran saya pada artikel kali ini dan akan saya lanjutkan pada artikel selanjutnya dengan cara membangun jariangan yang bagus, dan cara penanggulangnan masalah pada jaringan.
4. Type jaringan
Type Jaringan terkait erat dengan sistem operasi jaringan. Ada dua type jaringan, yaitu client-server dan type jaringan peer to peer.

A. Jaringan Client-Server

Server adalah komputer yang menyediakan fasilitas bagi komputer- komputer lain di dalam jaringan dan client adalah komputer-komputer yang menerima atau menggunakan fasilitas yang disediakan oleh server. Server di jaringan tipe client-server disebut dengan Dedicated Server karena murni berperan sebagai server yang menyediakan fasilitas kepada workstation dan server tersebut tidak dapat berperan sebagai workstation.


Keunggulan :
• Kecepatan akses lebih tinggi karena penyediaan fasilitas jaringan dan pengelolaannya dilakukan secara khusus oleh satu komputer (server) yang tidak dibebani dengan tugas lain seperti sebagai workstation.
• Sistem keamanan dan administrasi jaringan lebih baik, karena terdapat sebuah komputer yang bertugas sebagai administrator jaringan, yang mengelola administrasi dan sistem keamanan jaringan.
• Sistem backup data lebih baik, karena pada jaringan client-server backup dilakukan terpusat di server, yang akan membackup seluruh data yang digunakan di dalam jaringan.

Kelemahan :
• Biaya operasional relatif lebih mahal.
• Diperlukan adanya satu komputer khusus yang berkemampuan lebih untuk ditugaskan sebagai server.
• Kelangsungan jaringan sangat tergantung pada server. Bila server mengalami gangguan maka secara keseluruhan jaringan akan terganggu.

B. Jaringan Peer To Peer

Bila ditinjau dari peran server di kedua tipe jaringan tersebut, maka server di jaringan tipe peer to peer diistilahkan non-dedicated server, karena server tidak berperan sebagai server murni melainkan sekaligus dapat berperan sebagai workstation.

Keunggulan :
• Antar komputer dalam jaringan dapat saling berbagi-pakai fasilitas yang dimilikinya seperti: harddisk, drive, fax/modem, printer.
• Biaya operasional relatif lebih murah dibandingkan dengan tipe jaringan client-server, salah satunya karena tidak memerlukan adanya server yang memiliki kemampuan khusus untuk mengorganisasikan dan menyediakan fasilitas jaringan.
• Kelangsungan kerja jaringan tidak tergantung pada satu server. Sehingga bila salah satu komputer/peer mati atau rusak, jaringan secara keseluruhan tidak akan mengalami gangguan.


Kelemahan :
• Troubleshooting jaringan relatif lebih sulit, karena pada jaringan tipe peer to peer setiap komputer dimungkinkan untuk terlibat dalam komunikasi yang ada.
• Di jaringan client-server, komunikasi adalah antara server dengan workstation.
• Unjuk kerja lebih rendah dibandingkan dengan jaringan client-server, karena setiap komputer/peer disamping harus mengelola pemakaian fasilitas jaringan juga harus mengelola pekerjaan atau aplikasi sendiri.
• Sistem keamanan jaringan ditentukan oleh masing-masing user dengan mengatur keamanan masing-masing fasilitas yang dimiliki.
• Karena data jaringan tersebar di masing-masing komputer dalam jaringan, maka backup harus dilakukan oleh masing-masing computer tersebut.
Diposting oleh LeBay'Z
Selasa, 21 Juli 2009 di 22.50 | 0 komentar  

BILANGAN HEKSADESMAL

Heksadesimal atau sistem bilangan basis 16 adalah sebuah sistem bilangan yang menggunakan 16 simbol. Berbeda dengan sistem bilangan desimal, simbol yang digunakan dari sistem ini adalah angka 0 sampai 9, ditambah dengan 6 simbol lainnya dengan menggunakan huruf A hingga F. Nilai desimal yang setara dengan setiap simbol tersebut diperlihatkan pada tabel berikut:

0hex

=

0dec

=

0oct

0

0

0

0

1hex

=

1dec

=

1oct

0

0

0

1

2hex

=

2dec

=

2oct

0

0

1

0

3hex

=

3dec

=

3oct

0

0

1

1

4hex

=

4dec

=

4oct

0

1

0

0

5hex

=

5dec

=

5oct

0

1

0

1

6hex

=

6dec

=

6oct

0

1

1

0

7hex

=

7dec

=

7oct

0

1

1

1

8hex

=

8dec

=

10oct

1

0

0

0

9hex

=

9dec

=

11oct

1

0

0

1

Ahex

=

10dec

=

12oct

1

0

1

0

Bhex

=

11dec

=

13oct

1

0

1

1

Chex

=

12dec

=

14oct

1

1

0

0

Dhex

=

13dec

=

15oct

1

1

0

1

Ehex

=

14dec

=

16oct

1

1

1

0

Fhex

=

15dec

=

17oct

1

1

1

1

[sunting] Konversi

[sunting] Konversi dari heksadesimal ke desimal

Untuk mengkonversinya ke dalam bilangan desimal, dapat menggunakan formula berikut:

Dari bilangan heksadesimal H yang merupakan untai digit hnhn − 1...h2h1h0, jika dikonversikan menjadi bilangan desimal D, maka:

D = \sum_{k=0}^{n} h_k \times 16^k

Sebagai contoh, bilangan heksa 10E yang akan dikonversi ke dalam bilangan desimal:

  • Digit-digit 10E dapat dipisahkan dan mengganti bilangan A sampai F (jika terdapat) menjadi bilangan desimal padanannya. Pada contoh ini, 10E diubah menjadi barisan: 1,0,14 (E = 14 dalam basis 10)
  • Mengalikan dari tiap digit terhadap nilai tempatnya.

1 \times 16^2 + 0 \times 16^1 + 14 \times 16^0

= 256 + 0 + 14

= 270

Dengan demikian, bilangan 10E heksadesimal sama dengan bilangan desimal 270.

[sunting] Konversi dari desimal ke heksadesimal

Sedangkan untuk mengkonversi sistem desimal ke heksadesimal caranya sebagai berikut (kita gunakan contoh sebelumnya, yaitu angka desimal 270):

 270 dibagi 16 hasil:  16   sisa 14  ( = E )
  16 dibagi 16 hasil:   1   sisa  0  ( = 0 )
   1 dibagi 16 hasil:   0   sisa  1  ( = 1 )

HEKSADESIMAL

Sistem bilangan basis 16 adalah sebuah sistem bilangan yang menggunakan 16 simbol. Berbeda dengan sistem desimal, simbol yang digunakan dari sistem ini adalah angka 0 sampai 9, ditambah dengan 6 simbol lainnya, menggunakan huruf A hingga F. Nilai desimal yang setara dengan setiap simbol tersebut diperlihatkan pada tabel berikut:

Heksadesimal

0

1

2

3

4

5

6

7

8

9

A

B

C

D

E

F

Desimal

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Konversi ke desimal

Untuk mengkonversinya ke dalam bilangan desimal, dapat menggunakan formula berikut:

Diberikan bilangan heksadesimal H yang merupakan untai digit hnhn − 1...h2h1h0, maka jika dikonversikan menjadi desimal D:

D = \sum_{k=0}^{n} h_k \times 16^k

Sebagai contoh, bilangan heksa 10E yang akan dikonversi ke dalam desimal:

  • Digit-digit 10E dapat dipisahkan dan mengganti bilangan A sampai F (jika terdapat) menjadi bilangan desimal padanannya. Pada contoh ini, 10E diubah menjadi barisan: 1,0,14 (E = 14 dalam basis 10)
  • Mengalikan dari tiap digit terhadap nilai tempatnya.

1 \times 16^2 + 0 \times 16^1 + 14 \times 16^0

= 256 + 0 + 14

= 270

Dengan demikian, bilangan 10E heksadesimal sama dengan bilangan desimal 270.

Konversi dari desimal

Sedangkan untuk mengkonversi sistem desimal ke heksadesimal caranya sebagai berikut (kita gunakan contoh sebelumnya, tetapi kita gunakan 270):

 270 dibagi 16 hasil:  16   sisa 14  ( = E )
  16 dibagi 16 hasil:   1   sisa  0  ( = 0 )
   1 dibagi 16 hasil:   0   sisa  1  ( = 1 )

Dari perhitungan diatas, nilai sisa yang diperoleh jika ditulis dari bawah ke atas menghasilkan : 10E yang merupakan hasil konversi dari bilangan desimal.

Penggunaan Notasi Oktal dan Heksadesimal

Sejauh ini penggunaan scalar baru menggunakan bilangan integer dengan notasi desimal. Selain notasi desimal, perl memungkinkan untuk menggunakan notaso lain seperti berikut.

Notasi basis 8, sering disebut dengan oktal.

Notasi basis 16, sering disebut dengan heksadesimal.

Untuk menggunakan notasi oktal, letakkan angka nol didepan setiap bilangan integer yang digunakan.

$bilangan = 076;

Variabel pada $bilangan memiliki nilai oktal 76 atau dalam desimal 62. Untuk menggunakan notasi heksadesimal, letakkan 0x didepan setiap bilangan integer, seperti berikut.

$bilangan = 0x2f;

Variabel $bilangan memiliki nilai 1f dalam heksadesimal atau 31 dalam desimal. Penggunaan huruf besar atau huruf kecil juga dimungkinkan dalam perl untuk merepresentasikan bilangan heksadesimal. Berikut adalah contoh penggunaannya.

$bilangan = 01F;

$bilangan = 01f;

String Karakter

Pada contoh-contoh program sebelumnya diperlihatkan bahwa perl dapat menggunakan sebuah teks yang menjadi nilai pada variabel scalar. Penggunaan sebuah teks pada variabel scalar seperti pada contoh berikut.

$var = "Ini adalah contoh kalimat";

Teks tersebut sering disebut dengan string karakter, atau biasa disingkat engan sebuah string. Sebuah string bisa berisikan satu atau lebih huruf, digit, spasi, atau karakter khusus.

Bilangan heksadesimal, atau bilangan heksa, atau bilangan basis 16, menggunakan 16 buah simbol, mulai dari 0 sampai 9, kemudian dilanjut dari A sampai F. Jadi, angka A sampai F merupakan simbol untuk 10 sampai 15. Contoh penulisan : C516.
Hmm.. Sepertinya prolognya sudah cukup. Lanjut ke proses kalkulasi…
8)

Saya langsung saja ambil sebuah contoh bilangan desimal yang akan dikonversi ke biner. Setelah itu, akan saya lakukan konversi masing2 bilangan desimal, biner, oktal dan heksadesimal.

Misalkan bilangan desimal yang ingin saya konversi adalah 2510.

Maka langkah yang dilakukan adalah membagi tahap demi tahap angka 2510 tersebut dengan 2, seperti berikut :

25 : 2 = 12,5

Jawaban di atas memang benar, tapi bukan tahapan yang kita inginkan. Tahapan yang tepat untuk melakukan proses konversi ini sebagai berikut :

25 : 2 = 12 sisa 1. —–> Sampai disini masih mengerti kan? :)

Langkah selanjutnya adalah membagi angka 12 tersebut dengan 2 lagi. Hasilnya sebagai berikut :

12 : 2 = 6 sisa 0. —–> Ingat, selalu tulis sisanya.

Proses tersebut dilanjutkan sampai angka yang hendak dibagi adalah 0, sebagai berikut :

25 : 2 = 12 sisa 1.

12 : 2 = 6 sisa 0.

6 : 2 = 3 sisa 0.

3 : 2 = 1 sisa 1.

1 : 2 = 0 sisa 1.

0 : 2 = 0 sisa 0…. (end)

Nah, setelah didapat perhitungan tadi, pertanyaan berikutnya adalah, hasil konversinya yang mana? Ya, hasil konversinya adalah urutan seluruh sisa-sisa perhitungan telah diperoleh, dimulai dari bawah ke atas.

Maka hasilnya adalah 0110012. Angka 0 di awal tidak perlu ditulis, sehingga hasilnya menjadi 110012. Sip?

Diposting oleh LeBay'Z
Visit the Site
MARVEL and SPIDER-MAN: TM & 2007 Marvel Characters, Inc. Motion Picture © 2007 Columbia Pictures Industries, Inc. All Rights Reserved. 2007 Sony Pictures Digital Inc. All rights reserved. blogger templates